Posted by: gulfofmexicomatters | July 1, 2010

Out of Sight – Out of Mind: The Unseen Disaster of the BP Blowout.

Scientists at sea and sampling the ocean on the scene of the blowout, are reporting plumes of oil throughout the water column for tens of miles from the blowout site, dead organisms are covering the surface near the blowout, and a dead sperm whale has now been found far from shore.  These reports raise the question: what is the condition of the ocean itself?  The answer is likely, not good.

Underwater clouds of oil and methane gas have now been confirmed as originating from the BP blowout after weeks of denial.  One of these clouds encompassed an area the size of San Francisco and 600 feet thick was found at 3,000 feet or more beneath the surface. Low levels of oil concentration (0.5 parts per million) have been found in this cloud and other samples are being evaluated.  High quantities of methane and very low oxygen levels were also reported in the cloud.  This means organisms in the sea are suffocating and explains why microbes that require oxygen to break down the oil are not cleaning the spill naturally. Worse, is that there are likely long-lived “dead zones” drifting through the Gulf and perhaps over deepwater ecosystems where recovery time can be centuries, or not at all.  Other, larger clouds have been reported and a large scale and coordinated effort is searching for more.

While much attention has focused on the pictures of oiled birds, marshes and beaches, the media is showing only the “tip of the iceberg” of the ecological disaster unfolding in the Gulf of Mexico.  Massive quantities of dispersants (1.28 million gallons by day 58 of the spill) are being used at both the wellhead (5,000 feet deep) and at the surface of the ocean.  Used effectively at the surface, dispersants can accelerate microbial activity and degradation of toxic elements of an oil spill.  We have no idea about effectiveness or impact when used at depth.  It is, as has been stated, a giant experiment.  It is a difficult choice and few would disagree that keeping oil out of the wetlands is a high priority.  However, beneath the sea surface is a toxic soup of oil, methane and dispersants, which is also killing many sensitive parts of the ecosystem.  Because this disaster is unfolding beneath the surface, it is occurring out of sight.  Its effects are likely more devastating to the Gulf of Mexico and the sustainability of the Gulf economy than those we have already seen.  These effects have been occurring since the beginning of the blowout, long before oil arrived on the shore.

As the oil emerges from the sea floor it immediately disperses into droplets, much like liquid being pumped by a sprayer.  These droplets, along with methane and possibly dispersants, form a plume that bends with the current, much like smoke rising from a smoke stack on a windy day.  This is a part of the breakdown of the oil and it helps it dissolve into the water.  So, as the oil rises, the entire water column becomes degraded.  Add dispersants to this, and you have a toxic stew killing millions upon millions of marine organisms.  As the oil reaches the surface, waves will mix it with water and air forming a “mousse.”  Crude oil is a complex mixture and the mousse allows the lighter components to evaporate into the air, leaving behind the heavier components.  As the heavier components mix with sediment and particles in the water it will form a tar-like like substance that will sink.  The net effect is an impact that reaches from the bottom to the surface of the ocean.

Light from the sun further breaks down the smaller oil molecules at the surface, and now the dissolved fractions of the oil can contain many toxic compounds that can be absorbed by phytoplankton (small one-cell plants) in a process called bioaccumulation.  Zooplankton (small floating organisms) can take up oil compounds and small fish can also absorb it through their gills.  The larger danger however, is biomagnifications through the food web.  While the concentration of the toxic compounds in the water is small, these compounds dissolve in fat and concentrate within organisms.  Zooplankton eat many phytoplankton, and small forage fish eat many zooplankton, thus the toxic chemicals quickly become concentrated in ever increasing amounts as it passes up the food chain.

Luckily, fish, birds, and marine mammals can metabolize the oil so that it does not biomagnify in the highest trophic levels.  There is a cost however, because animals will have to divert energy from reproduction to detoxify the oil, and they will produce less offspring creating long-term declines in populations.  Species like the Atlantic Bluefin Tuna, which congregate and spawn practically in the middle of the spill zone, are especially susceptible.  We could, and we may, have already lost an entire year class of the population of this species which spawns only in the Gulf.  These magnificent giants are already under extreme pressure from overfishing and this spill could certainly be the tipping point in a downward and non-recoverable spiral.

While most deep sea habitats are primarily muddy bottoms, the Gulf of Mexico is unusual in that it has very complex bottom topography that includes many reefs, hard banks, and deep trenches called the Mississippi Canyon and the DeSoto Canyon.  These features are home to very diverse marine organisms.  One important feature in the area off the Mississippi-Alabama continental shelf is the Pinnacles habitat.  This area is like an underwater mountain range that supports deep sea corals, crustaceans, mollusks, sea-lilies, and many bottom fish.  As the heavy parts of the oil sinks it will endanger the bottom habitats by coating them with tar.  At the surface, are the pelagic fish such as tuna, amberjack, and ling, which will become tainted.  Dolphins and whales are plentiful in this region and will be coated with oil as the bob to the surface to breathe air.

To make matters worse, the area of the blowout and oil slick is the most productive part of the Gulf of Mexico.  This is because nutrients from the Mississippi River promote algal growth, which is at the base of the food chain.  This plankton (or swimming food) falls to the bottom creating the richest shrimping and fishing grounds in the Gulf.  There are two problems caused by the spill.  Not only are these organisms being killed, but the breakdown of the oil by bacteria requires oxygen, which will further increase the size of the dead zone off Louisiana this summer. The extraordinary quantities of methane are contributing to this problem. Researchers studyng the clouds have found concentrations of methane up to 10,000 times normal and oxygen levels depleted by 40%, over normal.

Both the water-column and bottom-dwelling organisms and food webs in and around the spill area are being affected by the spill.  The large, long-term danger may be from the oil that is stranded on the bottom.  The deep sea is about the same temperature as your refrigerator, so bacteria will not be able to break down the oil, and we can expect tar balls to emanate from this area for decades to come.  This also means that the disaster will continue for a decade or two as the oil within the environment continues to breakdown, dissolve, and move back into the surface waters.  Even though smaller amounts will be released in the future, it will still have population-level effects because the juvenile stages of all marine animals are much more sensitive to toxins than adults.  The lost juveniles will have a ripple effect throughout marine populations because there will be fewer adults in future generations to reproduce and replenish the lost animals.

Unfortunately, this blowout is the perfect object lesson about an ecosystem and what it truly means – a community together with its environment, functioning as a unit.  Out of sight does not mean no concern.  There is nothing but bad choices in a situation like this.  However, because you cannot see it, does not mean it can just be ignored and sacrificed.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Categories

%d bloggers like this: